METHODS FOR CHARACTERIZATION AND THEIR INFLUENCE ON THE STRUCTURE OF SILICON-RICH ZEOLITES

E. Alsdorf, M. Feist*, H. Fichtner-Schmittler, H.-H. Jerschkewitz, U. Lohse and B. Parlitz

CENTRAL INSTITUTE OF PHYSICAL CHEMISTRY, ACADEMY OF SCIENCES OF THE G.D.R., BERLIN-ADLERSHOF, 1199 G.D.R. *CHEMISTRY DEPARTMENT, HUMBOLDT UNIVERSITY, BERLIN, 1040, G.D.R.

H, Li, Na, Cs, NH₄, Mg and Al–ZSM 5 zeolites and H and NH₄-mordenites were studied by DTA, X-ray diffraction, TPD and adsorption measurements. The stability relating to dealumination and structure destruction depends on the nature of the cation.

H and NH₄-ZSM 5 were strongly dealuminated to silicalitelike phases in the temperature range 973-1273 K during the course of the DTA measurement. NH₄-mordenite was dealuminated below 873 K in the TPD experiment on the deammonization.

The thermal destruction of ZSM 5 containing Na^+ , Mg^{2+} , Al^{3+} and Cs^+ ions begins at about 1400 K. Excess sodium ions present in the original Na–ZSM 5 decreased the thermal stability. For H and NH_4 -mordenites, complete amorphization was found at 1270 K.

The catalytic properties of ZSM 5 can be modified by ion-exchange. In this paper, data on the thermal stability, the acid sites and the pore volume are presented for ZSM 5 zeolites containing different metal ions.

Experimental

Sample preparation

The samples are listed in Table 1. From commercial Na–ZSM 5 (sample 6: HS–30, VEB CK Bitterfeld), samples 4, 5 and 7–9 were prepared by ion-exchange in 0.1 N salt solution. Sample 10 was obtained by treatment with HNO₃. The dealumination of sample 4 lead to samples 1–3. The parent sample 6 was further modified by washing to eliminate the excess sodium, and a second Na–ZSM 5 zeolite was prepared by Na⁺-exchange of sample 4 (Table 2).

Sample	Al/u.c.	Cation		TPD peak area, mmol/g	
		degree of exchange, %	radius, Å	520 K	720 K
1 HZSM 5	4.9	100		1.25	0.6
2 HZSM 5	1.5	100			
3 HZSM 5	0.8	100			
4 NH ₄ ZSM 5	5.4	100	1.43	0.65	
5 LiZSM 5	5.4	*	0.60	1.18	0.14
6 NaZSM 5	5.4	100	0.95	0.74	
7 CsZSM 5	5.4	•	1.69	0	
8 MgZSM 5	5.4	66	0.65	1.11	0.31
9 AIZSM 5	5.4	66	0.50	, 1.0	0.32
10 HZSM 5	5.4	100			
11 modernite					
H ⁺ form	3.0	100			
NH₄ ⁺ form	6.4	100			

A NUME I COMPOSITION OF THE SAMPLES AND IF IS 1551	Composition of	e samples and	I TPD result
--	----------------	---------------	--------------

* probably 100%.

Instrumental

Thermal analysis: an STA 429 Netzsch Gerätebau GmbH, FRG; dried N₂ 70 ml min⁻¹, 5–10 deg min⁻¹, 30–50 mg, and a MOM derivatograph, Budapest, Hungary, 5 deg min⁻¹, 170 mg; TPD of NH₃: 12 and 4 deg min⁻¹, a stream of He, a thermal conductivity detector; X-ray: a Guinier-type camera, CuK_a radiation.

Results and discussion

Thermal analysis and X-ray

H-ZSM 5 did not show any marked effect in the DTA curves (Fig. 1) on heating to 1273 K. However, X-ray investigations revealed that strong dealumination occurs and silicate-like samples are formed (Table 2). The dealumination is also confirmed by the reduction in the uptake of water [1].

Between 1370 and 1570 K, a very weak exothermic deviation from the base line is observed, which corresponds to the collapse of the zeolitic structure. The amorphous material crystallized at about 1690 K to α -cristobalite, as indicated by an exothermic peak in the DTA curve.

Of the ZSM 5 samples containing different cations, the original Na-ZSM 5 shows

Sample	Treatment, K	Products	DTA, exothermic
1 HZSM 5	1273	ZSM 5 dealuminated	1170-1440 weak
	1610	α -, β -cristobalite, amorph.	1682 Tp*
	1700	α -, β -cristobalite	
10 HZSM 5	as l	as 1	1170-1520 weak
2 117834 6	1072	7SM 5 dealuminated	1065 Ip
2 HZSM 5	1273	ZSM 5 dealuminated	
3 HZSM 3 6 No7SM 5	1273	zsivi 5 dealuminated	
original	1273	α -quartz, α -cristobalite β -cristobalite-like	1290 Tp
	1540	α -, β -cristobalite-like Na ₆ Al ₄ Si ₄ O ₇	>1540 sintering
	1720	α -, β -cristobalite-like	
NaZSM 5 washed	1273	mainly ZSM 5	> 1375 sintering
NaZSM 5 exchang.	1273	ZSM 5	> 1420 sintering
7 CsZSM 5	1273	ZSM 5	
	1473	residual ZSM 5	> 1490 sintering
	1718	residual ZSM 5, β -cristob.	-
8 MgZSM 5	'1273	ZSM 5	
	1423	residual ZSM 5, β -cristob.	1465 Tp
	1573	α -, β -cristobalite	
9 AIZSM 5	1273	ZSM 5	
	1458	residual ZSM 5, β -cristob.	> 1477 sintering
	1720	α -, β -cristobalite	
11 H-mordenite	1273	amorphous	1280 Tp
	1573	mullite, a-cristobalite	1470 Tp
	1700	mullite, α -, β -cristobal.	>1620 sintering

Table 2	X-rav	and I	DTA	results
---------	-------	-------	-----	---------

* Tp = temperature of the peak maximum.

the lowest thermal stability. A partial structural destruction was already observed at 1170 K. A sharp exothermic peak at 1290 K marked the complete transformation into α - and β -cristobalite. Since the thermal stability increases after washing of the sample, the relative instability is due to the excess of sodium in this sample (Na/Al = 1.13).

The thermal desctruction of ZSM 5 containing Mg²⁺, Al³⁺ and CS⁺ ions (transformation into α - and β -cristobalite) begins at about 1400 K.

Fig. 1 DTA curves on HZSM 5, cation exchanged ZSM 5 and mordenite

Fig. 2 Adsorption isotherms of n-hexane on cation exchanged ZSM 5

J. Thermal Anal. 33, 1988

For mordenite, a weak exothermic peak is found at 1270–1280 K in the DTA. The X-ray investigation revealed the complete amorphization of the sample. A further exothermic peak (1470 K) and sintering (above 1560 K) mark the formation of mullite and small amounts of α -cristobalite, respectively. Above 1700 K, β -cristobalite too is formed.

Adsorption isotherms

Adsorption isotherms of *n*-hexane on ZSM 5 exchanged with Li⁺, Na⁺, Cs⁺, Mg^{2+} and Al^{3+} are given in Fig. 2. the adsorption capacity of 1.2 mmol g^{-1} (0.16 cm³ g⁻¹) lies in the range of the usual values. In the case of Cs–ZSM 5, only half of this value is found. The large Cs⁺ ion probably blocks part of the channel system in the ZSM 5 structure [2].

Temperature-programmed NH₃ desorption

In agreement with the literature [3], the TPD curves of H–ZSM 5 show two maxima (at about 520 and 720 K; Fig. 3). In the thermal decomposition of NH_4 –ZSM 5, a unique peak at 720 K corresponds to the chemisorption of NH_3 on Brönsted acid sites [1]. The TPD curves of H–ZSM 5 are completely reproducible in repeated runs, i.e. no changes are detectable.

a) thermal decomposition of NH₄ZSM 5 to HZSM 5[•]

b) NH₃ desorption on HZSM 5/NH₄ZSM 5

(adsorption at 390 K, heating rate 12 deg min⁻¹, 100 mg)

J. Thermal Anal. 33, 1988

Fig. 4 TPD of NH_3 on cation exchanged ZSM 5 (Conditions as in Figure 3b),

Fig. 5 TPD of NH₃ on cation exchanged ZSM 5

Fig. 6 TPD of NH₃ on mordenite
a) thermal decomposition of NH₄
mordenite to H mordenite
b) NH₃ desorption on H mordenite
(conditions as in Figure 3b)

Fig. 7 Comparison of the thermal decomposition of NH_4 -mordenite (a) and NH_4ZSM 5 (b)

J. Thermal Anal. 33, 1988

The 520 K peak reflects the interaction of NH_3 with centres weaker than the zeolitic cations. The influence of the radius and charge of the cation is demonstrated in Figs 4 and 5 and in Table 1. In the alkali metal series, the peak area decreases with increasing cation radius, in accordance with the results reported by Derewinski et al. [4].

In contrast to H–ZSM 5, mordenite is already changed during the thermal decomposition of the NH_4^+ form. Figure 6 demonstrates the reduction of the high-temperature peak due to dealumination. The broader distribution of the acid strength for mordenite as compared with ZSM 5 follows from Figs 7 and 8 [5].

Fig. 8 Comparison of NH₃ TPD on H-mordenite (a) and HZSM 5 (b)

References

- E. Alsdorf, M. Feist, H. Fichtner-Schmittler, Th. Gross, H.-J. Jerschkewitz, U. Lohse and B. Parlitz, Adsorption Science and Technology, submitted.
- 2 Pingdong Wu and Yi Hua Ma, 6th International Zeolite Conference, Reno 1983.
- 3 N. Topsoe, K. Petersen and E. Derouane, J. Catal., 70 (1981) 41.
- 4 M. Derewinski, J. Haber, J. Ptaszynski, J. A. Lerscher and G. Rumplmayr, Proceedings of the 7th International Zeolite Conference (ed. by Murakami et al.) Tokyo 1986, 957.
- 5 D. Kalló, I. Bankós and J. Papp, Proceedings International Symposium on Zeolite Catalysis, Siófok, Hungary 1985, 329.

Zusammenfassung — H-, Li-, Na-, Cs-, NH₄-, Mg- und Al-Zeolithe ZSM 5 sowie H- und NH₄-Mordenit wurden durch DTA, Röntgenbeugung, temperaturprogrammierte Desorption (TPD) und Adsorptionsmessungen untersucht. Die Stabilität gegenüber Dealuminierung und Strukturzusammenbruch hängt von der Art des Kations ab. H- und NH₄-ZSM 5 werden im Verlauf der DTA-Messungen im Bereich 973—1273 K zu Silicalit-ähnlichen Phasen dealuminiert. NH₄-Mordenit wird unterhalb 873 K bei der Ammoniakabspaltung im TPD-Experiment dealuminiert. Der thermische Zusammenbruch von Na-, Mg-, Al- und Cs-ZSM 5 beginnt um 1400 K. Im ursprünglichen NaZSM 5 vorhandene überschüssige Natriumionen verringern seine thermische Stabilität. Für H- und NH₄-Mordenit wird bei 1270 K vollständige Amorphisierung gefunden.

Резюме — Методами ДТА, рейтгенофазового анализа и адсорбции изучены H, Li, Na, Cs, NH₄, Mg, Al ZSM 5 цеолиты и H-, NH₄-мордениты. Устойчивость к деалюминированнию и характер деструкции зависят от типа катиона. Методом ДТА установлено, что образцы H- и NH₄—ZSM 5 в интервале температур 973—1273 подвергаются интенсивному деалюминированию с образованием силикатоподобных фаз. При проведении ТПД экспериментов установлено, что NH₄-морденит деалюминируется ниже температуры 873 К. Термическая деструкция образцов ZSM 5 цеолитов, содержащих коны натрия, цезия, магния и алюминия, начинается при температуре около 1400 К. Наличие избыточных ионов натрия в исходном образце цеолита NaZSM 5 уменьшает его термоустойчивость. Полная аморфизация H/NH₄-морденита происходит при 1270 К.